Identification of Nonlinear Dynamic Models with Partially Connected Neural Networks Trained Using Orthogonal Least Square Estimation
نویسندگان
چکیده
منابع مشابه
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملPhoneme Probability Estimation with Dynamic Sparsely Connected Artificial Neural Networks
This paper presents new methods for training large neural networks for phoneme probability estimation. An architecture combining time-delay windows and recurrent connections is used to capture the important dynamic information of the speech signal. Because the number of connections in a fully connected recurrent network grows super-linear with the number of hidden units, schemes for sparse conn...
متن کاملOrthogonal eigensubspace estimation using neural networks
AbstructIn this paper, we present a neural network (NN) approach for simultaneously estimating all or some of the orthogonal eigenvectors of a symmetric nonindefinite matrix corresponding to its repeated minimum (in magnitude) eigenvalue. This problem has its origin in the constrained minimization framework and has extensive applications in signal processing. We recast this problem into the NN ...
متن کاملNonlinear Systems Identification Using Deep Dynamic Neural Networks
Neural networks are known to be effective function approximators. Recently, deep neural networks have proven to be very effective in pattern recognition, classification tasks and human-level control to model highly nonlinear realworld systems. This paper investigates the effectiveness of deep neural networks in the modeling of dynamical systems with complex behavior. Three deep neural network s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1999
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.119.3_335